Marchuk, Kyle Guo, Yijun Sun, Wei Vela, Javier Fang, Ning High-Precision Tracking with Non-blinking Quantum Dots Resolves Nanoscale Vertical Displacement Novel non-blinking quantum dots (NBQDs) were utilized in three-dimensional super-localization, high-precision tracking applications under an automated scanning-angle total internal reflection fluorescence microscope (SA-TIRFM). NBQDs were randomly attached to stationary microtubules along the radial axis under gliding assay conditions. By automatically scanning through a wide range of incident angles with different evanescent-field layer thicknesses, the fluorescence intensity decay curves were obtained. Fit with theoretical decay functions, the absolute vertical positions were determined with sub-10-nm localization precision. The emission intensity profile of the NBQDs attached to kinesin-propelled microtubules was used to resolve the self-rotation of gliding microtubules within a small vertical distance of ∼50 nm. We demonstrate the applicability of NBQDs in high-precision fluorescence imaging experiments. incident angles;reflection fluorescence microscope;microtubule;decay functions;emission intensity profile;fluorescence intensity decay curves;assay conditions;NBQD 2012-04-11
    https://acs.figshare.com/articles/media/High_Precision_Tracking_with_Non_blinking_Quantum_Dots_Resolves_Nanoscale_Vertical_Displacement/2531929
10.1021/ja301332t.s001