10.1021/jp302617y.s001 Manuel Goubet Manuel Goubet Roman A. Motiyenko Roman A. Motiyenko Laurent Margulès Laurent Margulès Jean-Claude Guillemin Jean-Claude Guillemin Synthesis, High-Resolution Millimeter-Wave Spectroscopy, and Ab Initio Calculations of Ethylmercury Hydride American Chemical Society 2012 quantum chemical calculations constant ab initio method quadrupole ab initio value spectroscopic compound ethylmercury hydride parameter Ab Initio Calculations 2012-06-07 00:00:00 Journal contribution https://acs.figshare.com/articles/journal_contribution/Synthesis_High_Resolution_Millimeter_Wave_Spectroscopy_and_Ab_Initio_Calculations_of_Ethylmercury_Hydride/2515747 The millimeter-wave rotational spectrum of an organomercury compound, ethylmercury hydride, has been recorded and assigned for the first time. The spectroscopic study is complemented by quantum chemical calculations taking into account relativistic effects on the mercury atom. The very good agreement between theoretical and experimental molecular parameters validates the chosen ab initio method, in particular its capability to predict accurate quartic centrifugal distortion constants related to this type of compound. Estimations of the nuclear quadrupole coupling constants have less predictive power than those of the structural parameters, but are good enough to satisfy the spectroscopic needs. In addition, the orientation of the axis of the H–Hg–C bonds deduced from the experimental nuclear quadrupole coupling constants compares well with the corresponding ab initio value. From the good agreement between experimental and theoretical results, together with the observation of the six most abundant isotopes of mercury, ethylmercury hydride is unambiguously identified as the product of the chemical reaction described here, and its calculated equilibrium geometry is confirmed.