Substituent Effects of the Backbone in α‑Diimine Palladium Catalysts on Homo- and Copolymerization of Ethylene with Methyl Acrylate GuoLihua GaoHaiyang GuanQirui HuHaibin DengJuean LiuJun LiuFengshou WuQing 2012 On the basis of different approaches for modifying α-diimine palladium catalysts, a series of methyl chloride palladium complexes with various α-diimine ligand backbones were synthesized and characterized. The corresponding cationic palladium complex chelating esters were further obtained by treatment of methyl chloride palladium complexes with methyl acrylate (MA). It was observed that decomposition of a cationic palladium complex chelating ester can occur to produce a new cationic palladium complex chelating two ligands and two counteranions, which provides a new pathway for deactivation of palladium catalysts and formation of palladium black by a fragmentation pattern with ester loss. These α-diimine palladium catalysts were employed in the homopolymerization of ethylene and copolymerization of ethylene and MA to evaluate substituent effects of the ligand backbone. A bulky camphyl α-diimine palladium catalyst was found to show better thermal stability and afford high-molecular-weight copolymer with higher incorporation of polar monomer. Longstanding living polymerization of ethylene was also achieved within 12 h using a bulky camphyl α-diimine palladium catalyst.