10.1021/om300735d.s004 Wei Zhong Wei Zhong Qiwu Yang Qiwu Yang Yi Shang Yi Shang Guifeng Liu Guifeng Liu Haitao Zhao Haitao Zhao Yizhi Li Yizhi Li Hong Yan Hong Yan Synthesis and Reactivity of the Imido-Bridged Metallothiocarboranes CpCo(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)(NSO<sub>2</sub>R) American Chemical Society 2012 2R 4 b 2 b show bond insertion Ph azide R 1 9 b CpCo 10 b MePh DFT 3 b Co R 2 COOMe 7 b NSO 2012-09-24 00:00:00 Dataset https://acs.figshare.com/articles/dataset/Synthesis_and_Reactivity_of_the_Imido_Bridged_Metallothiocarboranes_CpCo_S_sub_2_sub_C_sub_2_sub_B_sub_10_sub_H_sub_10_sub_NSO_sub_2_sub_R_/2484229 The reactions of the 16-electron half-sandwich complex CpCo­(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>) (<b>1</b>) (Cp: cyclopentadienyl) with sulfonyl azides (<i>p</i>-toluenesulfonyl azide, TsN<sub>3</sub>; methanesulfonyl azide, MsN<sub>3</sub>) in refluxing dichloromethane or at ambient temperature lead to imido-bridged adducts CpCo­(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>) (NSO<sub>2</sub>R) (<b>2a</b>, R = 4-MePh; <b>2b</b>, R = Me) which can convert to the tetraazadiene cobalt complexes CpCoN<sub>4</sub>(SO<sub>2</sub>R)<sub>2</sub> (<b>3a</b>, R = 4-MePh; <b>3b</b>, R = Me) in the presence of excess azide if heated. The reactions of <b>1</b> with acyl azides (methyl azidoformate and benzoyl azide) lead to CpCo­(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)­(CONR) (<b>4a</b>, R = OMe; <b>4b</b>, R = Ph) with a newly-generated five-membered metallacyclic ring Co–S–N–C–O. Complexes <b>2a</b> and <b>2b</b> show further reactivity toward alkynes to give rise to the insertion products CpCo­(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)­(R<sub>1</sub>CCR<sub>2</sub>) (NSO<sub>2</sub>R) (R<sub>1</sub> = COOMe, R<sub>2</sub> = H, R = 4-MePh, <b>5a</b>, R = Me, <b>5b</b>; R<sub>1</sub> = R<sub>2</sub> = COOMe, R = 4-MePh, <b>6a</b>, R = Me, <b>6b</b>; R<sub>1</sub> = COOMe, R<sub>2</sub> = Ph, R = 4-MePh, <b>8a</b>, R = Me, <b>8b</b>) formed by alkyne addition to a Co–S bond to generate a Co–C–C–S four-membered ring and CpCo­(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)­(R<sub>1</sub>CCR<sub>2</sub>NSO<sub>2</sub>R) (R<sub>1</sub> = H, R<sub>2</sub> = Ph, R = 4-MePh, <b>7a</b>, R = Me, <b>7b</b>; R<sub>1</sub> = COOMe, R<sub>2</sub> = Ph, R = 4-MePh, <b>9a</b>, R = Me, <b>9b</b>) formed by alkyne insertion into a Co–N bond to generate a Co–C–C–N–S five-membered ring. In the case of PhCCCO<sub>2</sub>Me, the products with insertion into both Co–S and Co–N bonds are isolated. Interestingly, if <i>tert</i>-butylacetylene is used, CpCo­(S<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>)­(R<sub>1</sub>R<sub>2</sub>CCNSO<sub>2</sub>R) (R<sub>1</sub> = <i>t</i>Bu, R<sub>2</sub> = H, R = 4-MePh, <b>10a</b>, R = Me, <b>10b</b>) are generated by insertion of terminal carbon into a Co–N bond to form four-membered ring Co–C–N–S. The insertion pathways of these reactions have been discussed on the basis of DFT calculations. All the new complexes were fully characterized, and X-ray structural analyses were performed for <b>2a</b>, <b>3a</b>, <b>3b</b>, <b>4a</b>, <b>4b</b>, <b>5a</b>, <b>6a</b>, <b>7a</b>, <b>7b, 8a</b>, <b>9a</b>, <b>9b</b>, and <b>10b</b>.