Right- and Left-Handed Helices, What is in between? Interconversion of Helical Structures of Alternating Pyridinedicarboxamide/<i>m</i>‑(phenylazo)azobenzene Oligomers Peng Tao Jon R. Parquette Christopher M. Hadad 10.1021/ct2009335.s002 https://acs.figshare.com/articles/media/Right_and_Left_Handed_Helices_What_is_in_between_Interconversion_of_Helical_Structures_of_Alternating_Pyridinedicarboxamide_i_m_i_phenylazo_azobenzene_Oligomers/2461234 Some unnatural polymers/oligomers have been designed to adopt a well-defined, compact, three-dimensional folding capability. Azobenzene units are common linkages in these oligomer designs. Two alternating pyridinedicarboxamide/<i>m</i>-(phenylazo)­azobenzene oligomers that can fold into both right- and left-handed helices were studied computationally in order to understand their dynamical properties. Helical structures were shown to be the global minima among the many different conformations generated from the Monte Carlo simulations, and extended conformations have higher potential energies than compact ones. To understand the interconversion process between right- and left-handed helices, replica-exchange molecular dynamic (REMD) simulations were performed on both oligomers, and with this method, both right- and left-handed helices were successfully sampled during the simulations. REMD trajectories revealed twisted conformations as intermediate structures in the interconversion pathway between the two helical forms of these azobenzene oligomers. This mechanism was observed in both oligomers in current study and occurred locally in the larger oligomer. This discovery indicates that the interconversion between helical structures with different handedness goes through a compact and partially folded structure instead of globally unfold and extended structure. This is also verified by the nudged elastic band (NEB) calculations. The temperature weighted histogram analysis method (T-WHAM) was applied on the REMD results to generate contour maps of the potential of mean force (PMF). Analysis showed that right- and left-handed helices are equally sampled in these REMD simulations. In large oligomers, both right- and left-handed helices can be adopted by different parts of the molecule simultaneously. The interconversion between two helical forms can occur in the middle of the helical structure and not necessarily at the termini of the oligomer. 2016-02-20 04:09:45 right NEB oligomer PMF helical forms helice histogram analysis method conformation REMD interconversion Monte Carlo simulations