Part per Trillion Label-Free Electronic Bioanalytical Detection MagliuloMaria MallardiAntonia GristinaRoberto RidiFrancesca SabbatiniLuigia CioffiNicola PalazzoGerardo TorsiLuisa 2013 A Functional Bio-Interlayer Organic Field-Effect Transistor (FBI-OFET) sensor, embedding a streptavidin protein capturing layer, capable of performing label-free selective electronic detection of biotin at 3 part per trillion (mass fraction) or 15 pM, is proposed here. The response shows a logarithmic dependence spanning over 5 orders of magnitude of analyte concentration. The optimization of the FBI analytical performances is achieved by depositing the capturing layer through a controllable Layer-by-Layer (LbL) assembly, while an easy processable spin-coating deposition is proposed for potential low-cost production of equally highly performing sensors. Furthermore, a Langmuirian adsorption based model allows rationalizing the analyte binding process to the capturing layer. The FBI-OFET device is shown to operate also with an antibody interlayer as well as with an <i>ad hoc</i> designed microfluidic system. These occurrences, along with the proven extremely high sensitivity and selectivity, open to FBI-OFETs consideration as disposable electronic strip-tests for assays in biological fluids requiring very low detection limits.