Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography Yuen-ZhouJoel AriasDylan H. EiseleDorthe M. SteinerColby P. KrichJacob J. BawendiMoungi G. NelsonKeith A. Aspuru-GuzikAlán 2014 Long-lived exciton coherences have been recently observed in photosynthetic complexes <i>via</i> ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments against interpreting them in terms of exciton dynamics, demanding more stringent tests. We propose a novel strategy, quantum process tomography (QPT), for ultrafast spectroscopy and apply it to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature from eight narrowband transient grating experiments. Our analysis reveals the absence of nonsecular processes, unidirectional energy transfer from the outer to the inner wall exciton states, and coherence between those states lasting about 150 fs, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a “warm” and complex system and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.